USN

Fourth Semester B.E. Degree Examination, December 2010 Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

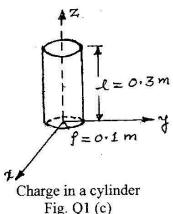
1 a. Define the following:

i) Electric field intensity.

ii) Electric scalar potential.

(05 Marks)

- b. A point charge Q_1 =25 nC is located at $P_1(4, -2, 7)$ and a charge Q_2 =60 nC be at $P_2(-3, 4, 2)$
 - i) If $\epsilon = \epsilon_0$ find 'E' at $P_3(1, 2, 3)$.


ii) At what point on the y-axis is $E_x = 0$?

(08 Mar

c. Determine the charge enclosed in a cylinder shown in fig.Q1 (c), when the volume charge

density,
$$\rho_v = 2.0e^{-z}(x^2 + y^2)^{-\frac{1}{4}} \text{ c/m}^3$$
.

(07 Marks)

- a. Derive an expression for the electric field strength due to finite and infinite line of charge of linear charge density ρ_L c/m.
 (07 Marks)
 - b. A sphere of volume 0.1 m³ has a charge density of 8.0 PC/m³. Find the electric field at the point (2, 0, 0), if the centre of the sphere is at (0, 0, 0). (05 Marks)
 - c. Given $E = (10y \hat{a}_x + 10x \hat{a}_y 2\hat{a}_z)$ V/m. Determine the work involved in carrying a charge of 3C from (0, -2, 8) to (5, 3, 23) along the path,
 - i) Direct straight line.

ii)
$$z_1 = 2x^3 - y^3$$
; $y^2 = x + 4$

(08 Marks)

- 3 a. Derive an expression for the Poisson's and Laplace's equation and write down the equation in all the three co-ordinate systems. (07 Marks)
 - b. If a potential $V = x^2yz + Ay^3z$, i) Find 'A' so that Laplace's equation is satisfied. ii) With the value of 'A', determine electric field at (2, 1, -1). (06 Marks)
 - c. Given potential field $V = 2x^2y 5z$ and a point P(-4, 3, 6) m. Find at P. i) the potential V, ii) Electric field intensity 'E', iii) the direction of 'E' iv) Electric flux density 'D', v) Volume charge density ' ρ_v ' vi) ρ_v at P. Assume $\epsilon = \epsilon_0$. (07 Marks)

- With usual notation, derive an expression for the energy stored in an electrostatic field and show that the energy density in an electrostatic field is, $W = \frac{1}{2}DE = \frac{1}{2} \in E^2$.
 - b. A parallel plate capacitor of 10cm×10cm and d = 1 cm is charged to a potential of 1 KV with air as dielectric.
 - i) Find the energy stored.
 - ii) The capacitance is now disconnected from the source and a dielectric slab is inserted into the capacitor ($\epsilon_r = 4$). Calculate the energy stored.
 - c. Define divergence of electric flux density and derive an expression to show that $(\nabla \cdot D) = \rho$. Also represent the equation in all the three co-ordinate systems.

PART - B

Derive an expression for the continuity equation.

(06 Marks)

b. State and prove Biot-Savart law.

(06 Marks)

- c. Find the magnetic field intensity at the origin caused by a current element in free space Idl
 - $3\pi \hat{a}_z \mu A.m$ located at (3, -4, 0). i)

(08 Marks) $\pi(\hat{a}_x - 2\hat{a}_y + 2\hat{a}_z)$ mA.m located at (5, 0, 0) ii)

- Find the vector magnetic potential 'A' at a point due to a straight current carrying conductor 6 of length '21' m. Hence find 'B'.
 - Derive the Maxwell's equations for i) Free space ii) Harmonically varying field.

- c. A lossy dielectric has $\mu = 4\pi \times 10^{-9}$ H/m and $\epsilon = \frac{10^{-8}}{36\pi}$ F/m, $\sigma = 2 \times 10^{-8}$ S/m. The electric field, $E = 200 \sin \omega t$ $\hat{a}_z V/m$ exists at a certain point in the dielectric.
 - At what frequency will the conduction current density and displacement current densities have equal magnitudes?
 - At this frequency calculate the instantaneous displacement current density. (06 Marks)
- (07 Marks) a. Deduce an expression for wave equation in the case of a lossless medium.
 - (05 Marks) b. State and prove Poynting's theorem and show that $S = E \times H$.
 - iii) phase velocity V ii) phase constant - β c. Determine: i) attenuation constant - α iv) wave length - λ v) Intrinsic impedance Z_c for Ferrite at 10 GHz, given $\epsilon_r = 9$, $\mu_r = 4$, conductivity = 10 m \$U/m\$.
- (08 Marks) a. Derive an expression for the impedance of a conducting media. (05 Marks)
 - b. With an example, write a brief note on depth of penetration.
 - A 200 MHz plane electromagnetic wave is incident normally on a good conductor which is having a constant conductivity = 58 M \(\mathbf{O}\)/m. Find the following:
 - $\frac{1}{e}$ depth of penetration. i)
 - 1% depth. ii)
 - Wave length in the conductor λ . iii)

Velocity in the conductor - V_C.

(07 Marks)